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Abstract: To increase understanding of the interaction between phenotype and genotype x environment to 

improve crop performance, large amounts of phenotypic data are needed. Studying plants of a given strain 

under multiple environments can greatly help to reveal their interactions. To collect the labor-intensive 

data required to perform experiments in this area, a Mecanum-wheeled, magnetic-tape-following indoor 

rover has been developed to accurately and autonomously move between and inside growth chambers. 

Integration of the motor controllers, a robot arm, and a Microsoft Kinect (v2) 3D sensor was achieved in a 

customized C++ program. Detecting and segmenting plants in a multi-plant environment is a challenging 

task, which can be aided by integration of depth data into these algorithms. Image-processing functions 

were implemented to filter the depth image to minimize noise and remove undesired surfaces, reducing the 

memory requirement and allowing the plant to be reconstructed at a higher resolution in real-time. Three-

dimensional meshes representing plants inside the chamber were reconstructed using the Kinect SDK’s 

KinectFusion. After transforming user-selected points in camera coordinates to robot-arm coordinates, the 

robot arm is used in conjunction with the rover to probe desired leaves, simulating the future use of sensors 

such as a fluorimeter and Raman spectrometer. This paper reports the system architecture and some 

preliminary results of the system. 
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1. INTRODUCTION 

In a world of changing climate and increasing world 

population, there is a great need to understand the interaction 

between genotype and phenotype in order to produce enough 

crop yield. Organizations such as the Royal Society of London 

(2009) and the FAO (2011) suggest a need for at least a 50% 

increase in food supply in the next half-century. This will not 

be achieved without a drastic change in the way we grow our 

food. Sustainable intensification, involving increasing the 

productivity of existing farmland while reducing negative 

environmental impacts, is promoted as one of the best ways – 

and some would say the only way - to achieve this. 

One of the main methods to increase crop yield without 

increasing chemical use involves plant breeding techniques. 

Effective plant breeding requires in-depth data on plants’ 

health and growth patterns, which are part of their broader 

phenotype, or physical characteristics. Many traits relating to 

growth, performance, and yield are complex traits under 

polygenic control (Pieruschka et al., 2012). Studying these 

traits using plants’ phenotypes to understand how each strain 

behaves under various growing conditions is an important step 

toward improving the characteristics of a crop stock. This 

paper presents a technical solution to several issues relating to 

current phenotyping techniques. 

Due to the large amount of manual labor required in traditional 

by-hand phenotyping methods, numerous studies and 

experiments have been exploring phenotyping methods that 

are based on images, often either RGB (red, green, and blue 

channels) or RGB-D (red, green, blue, and depth channels). 

For instance, one phenotyping technique uses infrared and 

depth images acquired with a CamCube ToF camera (Alenyà, 

et al., 2013). The method involves taking a general view of the 

plant, segmenting to find leaves which are suitable for probing, 

and then moving the cameras closer to the suitable leaf using 

a Barret WAM arm. This leaf is then probed with a sample 

cutting tool. This points to the possibility for an application of 

a wide variety of sensors. For instance, fluorescence imaging 

sensors could be placed on the end of the robot arm for 

investigating the fluorochrome chlorophyll, which is involved 

in crop yield (Chaerle et al., 2001). Numerous other sensors, 

such as near-infrared spectroscopy, can be applied to extract 

phenotypic data (Montes et al., 2007).  

Other image-based phenotyping techniques use infrared stereo 

image sequences to extract depth and then segment the 

resulting data to extract parameters such as leaf area and 

number of leaves (Aksoy, et al., 2015). Tobacco plants can be 

stereo-imaged periodically, using a KUKA robot arm. The 

image pairs are then run through an OpenCV block-matching 

algorithm to extract depth information. Next, the images are 

segmented to distinguish each leaf. Leaf area is found by 

ellipse-fitting each leaf, and the number of leaves is compared 

to the ground truth obtained via human measurement. Since 

these methods used fixed plant imaging positions, the methods 

are mainly suitable for stationary plants and a stationary robot 

arm, limiting the experiment to one growth environment. In a 

growing area larger than the reach of the robot arm, this 

approach also requires conveyance of the plants out of their 

growth environment, introducing other stress factors outside 
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et al., 2013). The method involves taking a general view of the 

plant, segmenting to find leaves which are suitable for probing, 

and then moving the cameras closer to the suitable leaf using 

a Barret WAM arm. This leaf is then probed with a sample 

cutting tool. This points to the possibility for an application of 

a wide variety of sensors. For instance, fluorescence imaging 

sensors could be placed on the end of the robot arm for 

investigating the fluorochrome chlorophyll, which is involved 

in crop yield (Chaerle et al., 2001). Numerous other sensors, 

such as near-infrared spectroscopy, can be applied to extract 

phenotypic data (Montes et al., 2007).  

Other image-based phenotyping techniques use infrared stereo 

image sequences to extract depth and then segment the 

resulting data to extract parameters such as leaf area and 

number of leaves (Aksoy, et al., 2015). Tobacco plants can be 

stereo-imaged periodically, using a KUKA robot arm. The 

image pairs are then run through an OpenCV block-matching 

algorithm to extract depth information. Next, the images are 

segmented to distinguish each leaf. Leaf area is found by 

ellipse-fitting each leaf, and the number of leaves is compared 

to the ground truth obtained via human measurement. Since 

these methods used fixed plant imaging positions, the methods 

are mainly suitable for stationary plants and a stationary robot 

arm, limiting the experiment to one growth environment. In a 

growing area larger than the reach of the robot arm, this 

approach also requires conveyance of the plants out of their 

growth environment, introducing other stress factors outside 
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of the designed environment. Azzari et al. (2013) fused several 

point clouds, sometimes as many as 2000 point clouds per 

plant, to reconstruct the plant for extraction several pieces of 

information, including volume and allometric relationships. 

Point clouds were attained through manually moving their 

first-generation Kinect (v1). Chaivivatrakul et al. (2014) fused 

several point clouds into one 3d reconstruction and then 

extracted traits of corn plants such as leaf area, leaf length, and 

stem diameter. This method didn’t consider the case where 

multiple plants are in view. Finally, phenotyping can also be 

done in the field (Klodt, 2015). By taking a pair of images of 

the same grapevine plant, on several different days, some 

phenotyping can be done automatically. Once image pairs are 

acquired, they can be rectified to extract depth information, 

and finally segmented to find leaf and stem areas. This method 

did not provide an automated image capturing technique, and 

did not provide a framework for integration with other sensors 

for monitoring plant growth. 

The solution presented in this paper required a minimal 

amount of labor during run-time, and can be extended, by 

adapting established phenotyping and plant-breeding to the 

techniques, to track plants that are growing in multiple growth 

environments concurrently. This solution involved an 

autonomous rover equipped with a Universal Robots UR 10 

(UR10) robot arm, an industrial computer, a Microsoft Kinect 

(v2) sensor, and a rover base. The system was self-powered 

and required no wires to the outside world. The rover was 

equipped with a 120V power supply capable of powering 

numerous auxiliary sensors. This system allows for attachment 

of plant monitoring equipment, as illustrated in a small proof-

of-concept experiment. The rover autonomously moved to the 

region representing the desired growth chamber in a setup 

mimicking Iowa State University’s future Enviratron plant 

growth facility. This facility will contain several growth 

chambers with a robot vestibule in front of each chamber door. 

Once at the destination, the system probed several plants in the 

chamber with a rigidly-mounted steel rod that simulates other 

sensors that need to be placed at a certain distance and with a 

specific orientation to plant leaves. 

2. THE PHYSICAL SYSTEM 

2.1 Background on Hardware and Design 

The Enviratron Rover aims to be a tool which can be used to 

autonomously gather feedback on plants which are 

simultaneously growing in multiple environments, from 

sensors as varied as traditional cameras, Raman spectrometers, 

thermal imagers, and fluorescence monitoring systems. The 

final application consists of eight growth chambers, arranged 

in a grid pattern (Fig. 1). To reach these goals, the rover needs 

to be mobile, accurate at positioning sensors, and able to 

navigate the environment it is placed in (roughly 120 cm in the 

direction perpendicular to travel), all with extremely high 

reliability and repeatability. Additionally, making the rover 

autonomous has the potential to allow for data to be collected 

at precise intervals of time, with significantly lowered per-data 

labor requirements for the researchers involved. It is desired 

that the system can run without human input for a whole day, 

or 8 hours. 

 

Fig. 1. The Chamber Arrangement. 
 
The scope of this paper is to present the system in an 

intermediate stage where automation is achieved for each 

individual task. Our setup is equivalent to assuming the growth 

chamber vestibule is opened, and the material separating the 

vestibule from the growth area is already removed. Human 

input was only required to select, using a PC, a point on the 

plant to image, and the human told the rover when to shift 

sideways to view another plant. The procedures required to get 

Raman spectrometer readings share very similar sub-tasks, 

such as locating the plant and calculation of the surface 

normal. 

 

Several commercial systems could be repurposed and 

programmed for this task. However, each have significant 

drawbacks. For instance, the Segway 440 Flex Omni has 

omnidirectional control, can interface with external hardware, 

and is specified to carry payloads as high as 450 kg. However, 

it has minimal support for large external electronics such as the 

UR10 and the base system is quite costly. Another system, the 

Neobotix MMO-550, is omnidirectional and has support for 

the UR10, sensors and sensors such as SICK NAV350, and 

can be controlled using the open-sourced Robotic Operating 

System (ROS). However, its uptime is quoted at 3 hours, there 

is limited additional space for sensors and electronics, and is 

also quite costly. Finally, the Ridgeback, sold by Clearpath 

Robotics, fits the design requirements but is quite costly and is 

large for our application. 

It should be noted, however, that, to the best of our knowledge, 

no use of a rover for autonomous imaging of plants in multiple 

environments has been reported in the literature. These 

previously-mentioned commercial systems are only 

collections of multi-purpose hardware which we merely claim 

could be repurposed, i.e. modified and put to use, for the 

current novel task. 

2.2 System Hardware 

The rover proposed in this paper (Fig. 2) combines many 

features which are desirable in research applications similar to 
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this, and only a brief overview of these features will be 

explained in this section. 

 

Fig. 2. The Enviratron Rover. 

The main frame of the rover uses the T-slotted aluminum 

building system sold by 8020 Inc. (Columbia City, Indiana, 

USA). This makes the overall system architecture extremely 

modular and adaptive, and also provides natural ease of 

maintenance. The system was modeled entirely in SolidWorks 

prior to build. There was one Roboteq FBL2360 motor 

controller for each side (Left and Right) each controlling two 

Midwest Motion Products MMP BL58-412F-48V GRA60-

032 brushless DC motors. Each motor drove one 6” Mecanum 

Wheel HD, purchased through AndyMark. Four dust and 

water-resistant Roboteq MG1600 magnetic tape sensors were 

used for guidance and simple localization. A Spektrum DX6i 

Transmitter was used for remote control during development. 

One lighted hard-wired emergency stop was placed on each 

side for safety. A Meanwell TS1000 DC/AC inverter powered 

external 120 V outlets as well as the three core components of 

the imaging and probing system: a Logic Supply ML400G-30 

industrial computer, Microsoft Kinect for Windows V2, and 

Universal Robots UR 10 robot arm. Finally, the whole system 

is powered by a 100Ah battery from AA Portable Power Corp 

(also known as batteryspace.com). This battery was chosen for 

its high energy storage capacity and appropriate balance of 

features, safety, and pricing. The overall system, excluding the 

UR10 arm to allow comparison with previously-mentioned 

commercial systems, had roughly half the cost of the least-

expensive commercial system. 

The Mecanum wheels used are similar to those analyzed by 

Gfrerrer (2008). In the ideal Mecanum wheel, force between 

the wheel and the ground only occurs along a vector parallel 

to the axis of the single roller which is in contact with the 

ground at that instant. Each roller’s axis is rotated 45 degrees 

from the motor’s axis. The wheels make contact with the 

ground in a shape described as an “O”, a configuration often 

termed “O from below” in the robotics community. If the 

wheels are installed such that this does not occur, the stability 

was found to be poor, especially for lateral motion. 

3. SOFTWARE 

3.1 Overview 

Our task mainly involves: localization of the rover, control of 

the motion of the rover, building knowledge of the growth 

chamber’s contents, and positioning the sensor. The way we 

integrated our hardware allowed compartmentalization of 

these tasks, all of which can be controlled by the “brain”, 

which is the PC (Fig. 3). 

 

Fig. 3. Software Hierarchy. Line denotes a communication 

line, and arrows show direction packets are sent. 

 

Various communication protocols and technologies were 

leveraged. Three tape-sensor data streams were sent to the 

motor controllers using Pulse Width Modulation (PWM), and 

one magnetic sensor used Roboteq’s proprietary RoboMag 

protocol, allowing marker information to be transmitted easily. 

Motor position was implicitly sent to the motor controller via 

the built-in Hall-effect sensor. Roboteq’s proprietary 

implementation of a PID closed-loop speed controller was 

leveraged by our custom scripts to control each motor during 

each scan cycle. The two motor controllers communicated 

using Roboteq’s proprietary implementation of the Controller 

Area Network (CAN) protocol. Our custom PC code was all 

written in C++. The PC modifies and reads the motor 

controllers’ internal variables using serial (RS232) 

communication. The PC gets current pose (position and 

orientation) information and sends desired poses to the UR10 

via TCP/IP (Ethernet) communication. Kinect information is 

read using a USB 3.0 connection. 

3.2 A Brief Note on Control Strategy 

Although mathematical proof of stability for dynamic systems 

is quite common in the controls literature, that is not the focus 

of the present work. System modelling has been omitted for 

the time being and will likely be presented in a later report. 

Rather, this paper aims to present a working, intuitive, and 

adaptable framework for mobile manipulator implementation. 

The ideas presented could be applied to much wider classes of 

robots. Although it is dynamically-loaded, the system 

presented requires the controller to know relatively little about 

its system in order to function. 
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Various communication protocols and technologies were 

leveraged. Three tape-sensor data streams were sent to the 

motor controllers using Pulse Width Modulation (PWM), and 

one magnetic sensor used Roboteq’s proprietary RoboMag 

protocol, allowing marker information to be transmitted easily. 

Motor position was implicitly sent to the motor controller via 

the built-in Hall-effect sensor. Roboteq’s proprietary 

implementation of a PID closed-loop speed controller was 

leveraged by our custom scripts to control each motor during 

each scan cycle. The two motor controllers communicated 

using Roboteq’s proprietary implementation of the Controller 

Area Network (CAN) protocol. Our custom PC code was all 

written in C++. The PC modifies and reads the motor 

controllers’ internal variables using serial (RS232) 

communication. The PC gets current pose (position and 

orientation) information and sends desired poses to the UR10 

via TCP/IP (Ethernet) communication. Kinect information is 

read using a USB 3.0 connection. 

3.2 A Brief Note on Control Strategy 

Although mathematical proof of stability for dynamic systems 

is quite common in the controls literature, that is not the focus 

of the present work. System modelling has been omitted for 

the time being and will likely be presented in a later report. 

Rather, this paper aims to present a working, intuitive, and 

adaptable framework for mobile manipulator implementation. 

The ideas presented could be applied to much wider classes of 

robots. Although it is dynamically-loaded, the system 

presented requires the controller to know relatively little about 

its system in order to function. 
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All inputs and real-time commands are fed into the leading 

motor controller which then commands the other “follower” 

motor controller. The motor controller’s internal scripting has 

a large number of internal functions, but can only process 

Booleans and integers and has no ability to add libraries. This 

is generally not a limitation if clever coding practices are used. 

To provide the system with knowledge of its location, we have 

implemented a concept equivalent to tracking the rising edge 

of strategically-placed markers (any “upside-down” magnetic 

tape is interpreted as a marker by the MG1600’s). A marker on 

one side of the track makes the controller “look” for rising 

edges on the other side of the track. The number of rising edges 

found during one “look” interval is stored as the last known 

location in the motor controller. To determine when the rover 

should turn off of the main track, we checked whether we 

counted an even or odd number of markers and compared with 

the current desired chamber. An example of this logic, for an 

odd chamber number, is presented in Fig. 4. In addition to 

information on the most recent marker count, representing the 

current magnetic-tape branch, the system can recognize the 

four-way intersection inside each individual chamber that 

corresponds to the leftmost plant. This provides requisite low-

level localization. Further localization within the chamber will 

result from feedback from the Kinect sensor. 

 

MarkerCopy = Marker 

While MarkerCopy > 2 

 MarkerCopy = MarkerCopy – 2 

If MarkerCopy = 1 & Marker = DesiredChamber 

 Follow Left Track 

Fig. 4. Psuedocode for Track Choice. 

 

The rover has two modes for guidance: one-sensor 

proportional control and two-sensor proportional control. The 

strategy can be boiled down to the following formulas. 

 

1-sensor control: 

𝑉𝑉𝐷𝐷𝐷𝐷𝐷𝐷 = 𝑉𝑉𝐷𝐷𝐷𝐷𝐷𝐷 ∗ 𝐹𝐹     (1) 

𝐹𝐹 = {
0.5 𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑜𝑜𝑡𝑡

0.75 𝑖𝑖𝑖𝑖 𝑙𝑙𝑙𝑙𝑖𝑖𝑡𝑡 𝑡𝑡𝑡𝑡𝑡𝑡𝑙𝑙 𝑑𝑑𝑙𝑙𝑡𝑡𝑙𝑙𝑑𝑑𝑡𝑡𝑙𝑙𝑑𝑑 (𝑖𝑖. 𝑙𝑙. "𝑙𝑙𝑜𝑜𝑜𝑜𝑙𝑙")
1 𝑙𝑙𝑙𝑙𝑡𝑡𝑙𝑙

 (2) 

𝑉𝑉𝑆𝑆𝐷𝐷𝐷𝐷 = 𝐾𝐾1 ∗ 𝑇𝑇1     (3) 

 

2-sensor control: 

𝑉𝑉𝐷𝐷𝐷𝐷𝐷𝐷 = 𝑉𝑉𝐷𝐷𝐷𝐷𝐷𝐷 ∗ 𝐹𝐹     (4) 

𝐹𝐹 = {
0.5 𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑜𝑜𝑡𝑡

0.75 𝑖𝑖𝑖𝑖 𝑙𝑙𝑙𝑙𝑖𝑖𝑡𝑡 𝑡𝑡𝑡𝑡𝑡𝑡𝑙𝑙 𝑑𝑑𝑙𝑙𝑡𝑡𝑙𝑙𝑑𝑑𝑡𝑡𝑙𝑙𝑑𝑑 (𝑖𝑖. 𝑙𝑙. "𝑙𝑙𝑜𝑜𝑜𝑜𝑙𝑙")
1 𝑙𝑙𝑙𝑙𝑡𝑡𝑙𝑙

 (5) 

𝑉𝑉𝑆𝑆𝐷𝐷𝐷𝐷 = 𝐾𝐾2 ∗ (𝑇𝑇1 + 𝑇𝑇2)    (6) 

𝑉𝑉𝑃𝑃𝐷𝐷𝑃𝑃𝑃𝑃 = 𝐾𝐾2 ∗ (−𝑇𝑇1 + 𝑇𝑇2)    (7) 

Where VDEF is the default velocity, VDOT, VSTE, VPERP terms 

denote velocity in the direction of travel (DOT), steering, and 

perpendicular to the DOT, respectively. F is a scaling factor, 

K1 and K2 are proportional gains, T1 is the reading from the 

tape sensor on the leading edge of the robot (i.e. the DOT), and 

T2 is for the trailing edge. This is makes the robot correct the 

difference in the Tape readings by moving perpendicular to 

DOT; if the robot is moved forward both sensors will read 

opposite signs and strengthen the feedback. Similarly, an 

improperly-oriented robot, i.e. one that is not “pointing along 

the track”, will have both sensors have the same sign and the 

steer command will be strengthened. The three velocity terms 

are summed appropriately for each wheel (c.f. AndyMark), 

and the results are sent to the individual motors. 

 

3.3 Pre-Processing of Kinect Depth Data 

The imaging and probing system has to be inherently robust to 

varying leaf size, stalk height, and plant type. Two approaches 

have been considered: 1) the trivial case of hard-coding robot-

arm positions to several generally-desired poses, such as “front 

view” and “top view”. 2) The general case of calculating 

desired pose based on knowledge of the sensor being used and 

the current arrangement of plants. For this study, we focused 

on the second, more general case. 

Researchers have proposed using many 3D reconstruction 

methods on plants including structured light (Nguyen, 2015), 

time of flight (ToF) (Alenyá, 2013), and stereo reconstruction 

(Biskup, 2007). The Kinect V2 sensor was chosen for this 

study due to its affordable price, useful features and 

specifications (c.f., Butkiewicz 2014), and well-documented 

application program interface (API). An additional advantage 

of the Kinect V2 is that its Software Development Kit (SDK) 

provides reasonably accurate reconstruction sample code, 

termed KinectFusion that integrates easily into custom 

applications (Izadi et al., 2011, and Microsoft, 2016). 

Before being able to use the Kinect’s depth information to 

accurately position a robot arm, the mapping between the 

camera’s coordinate system and the robot arm’s end-effector’s 

coordinate system must be determined. (An overview of 

camera calibration can be found in the seminal Tsai and Lenz 

paper (1989)). This mapping can be completely defined by a 

rotation followed by a translation, which can be resented by an 

affine transformation: 

𝑃𝑃𝐷𝐷 = 𝐻𝐻𝐶𝐶𝐷𝐷 ∗ 𝑃𝑃𝐶𝐶      (8) 

Where PE denotes a point in robot end-effector coordinates 

[m], PC is a point in camera coordinates [m], and HCE is the 

transformation matrix from camera coordinates to the end-

effector coordinates. 

This calibration matrix was found using Christian Wengert’s 

add-on (Wengert) to the Camera Calibration Toolbox 

(Bouguet, 2015) for MATLAB. The HCE for our setup was 

approximately 

𝐻𝐻𝐶𝐶𝐷𝐷 = [
1 0 0 0.0540
0 −1 0 0.1026
0 0 −1 0.0825
0 0 0 1

]   (9) 

Feeding an unfiltered depth image to the KinectFusion 

algorithm was found to lead to a gradual erosion of the leaves, 

stalk, and stems of the plant, resulting in unusable meshes. 

However, this off-the-shelf algorithm was found to be very 

effective if an appropriately-filtered depth image was instead 

passed to the algorithm. The number of voxels that are tracked 

are limited, and unstable voxels are filtered out, to allow the 

algorithm to run in real time. In our application the table and 
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walls surrounding the plant are far more stable than the pixels 

corresponding to the thin-stemmed, thin-leaved plants. 

We wanted an algorithm that was computationally efficient 

enough to allow quick reconstructions, and knew the Kinect 

V2 API has an accurate mapping between the color camera and 

the depth camera. However, not every depth pixel has a 

corresponding color pixel due to physical properties of the 

sensors. We set depth pixels without an RGB counterpart to 

zero. Incoming images from the Kinect were put into a data 

structure that is effectively an RGB image. This representation 

is known to be sensitive to lighting changes. There are many 

methods for dealing with this issue. Yang and Waibel, for 

instance, found that human faces were clustered in what they 

term chromatic color space (Yang 1997). We are mainly 

interested in plants, which are generally diffuse green and 

brown objects, so we chose to convert our RGB input image 

into HSV. After conversion to HSV, an experimentally-

determined threshold was applied to each depth pixel. Let Dij 

(Tij) represent the pixel in row i row and column j of the R x C 

depth image (thresholded depth image), corresponding to a 

region of the HSV image as determined by the Kinect API’s 

mapping. We have, for 1 ≤ 𝑖𝑖 ≤ 𝑅𝑅 𝑎𝑎𝑎𝑎𝑎𝑎 1 ≤ 𝑗𝑗 ≤ 𝐶𝐶, 

𝑇𝑇𝑖𝑖𝑖𝑖 = {𝐷𝐷𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖 𝑉𝑉𝑖𝑖𝑖𝑖 < 140
0 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒     (10) 

The value of 140 conservatively thresholds out many 

extremely bright pixels, such as the walls of the growth 

chamber. Next, a 2x2 rectangular structuring element was used 

to morphologically dilate the image (Jain, 1995), 

conservatively removing many noisy elements. This resulting 

thresholded and dilated depth image, which contains the plant 

pixels plus some other pixels, is passed to the KinectFusion 

algorithm with default settings except for expanded voxels in 

the camera’s left-right direction, which it labels as X. The goal 

is to probe leaves close to the front of the plant, so Y and Z are 

currently not very important. Most settings were found to have 

minimal effect on the results. An example fusion image is 

shown in Fig. 5. Finally, the mesh is processed by the mesh 

probing algorithm. 

 

Fig. 5. A sample of fused image 

3.4 Mesh Probe Algorithm 

Given an initial pose of the robot, defined by position 𝑃𝑃 =
[𝑝𝑝𝑥𝑥, 𝑝𝑝𝑦𝑦, 𝑝𝑝𝑧𝑧]𝑇𝑇

 and rotation vector 𝑟𝑟 = [𝑟𝑟𝑥𝑥, 𝑟𝑟𝑦𝑦, 𝑟𝑟𝑧𝑧] in the robot 

base coordinates, we desire the transformation matrix from the 

end effector to the base. This is given by 

𝐻𝐻𝐸𝐸𝐸𝐸 =  [𝑅𝑅 𝑃𝑃
𝟎𝟎 1]     (11) 

The rotation matrix R is defined as 

𝑅𝑅 = [𝐴𝐴𝑥𝑥, 𝐴𝐴𝑦𝑦, 𝐴𝐴𝑧𝑧] = [
  c + rx

2v  rxryv– rzs rxrzv + rys
ryrxv + rzs c + ry

2v ryrzv– rx s
rzrxv– rys rzryv + rxs c + rz

2 v
] 

(12) 

Where 𝑐𝑐 = cos(θ) , s = sin(θ) , 𝑎𝑎𝑎𝑎𝑎𝑎 𝑣𝑣 = 1 − cos (θ). See 

Craig (2009) for discussion. 

 and 𝟎𝟎 = [0, 0, 0]. To convert user-selected points PCi, 1 ≤ 𝑖𝑖 ≤
3, from camera coordinates into base coordinates PBi, 1 ≤ 𝑖𝑖 ≤
3, we used 

𝑃𝑃𝐸𝐸𝑖𝑖 = 𝐻𝐻𝐸𝐸𝐸𝐸 ∗ 𝐻𝐻𝐶𝐶𝐸𝐸 ∗ 𝑃𝑃𝐶𝐶𝑖𝑖     (12) 

Next, we determined the normal to three user-selected points 

(the normalized cross product between [PC2-PC1] and [PC3-

PC1]) in order to calculate the desired end-effector coordinate 

system axes AX, AY, AZ. Two logical constraints were added 

to our system. Az should align with the surface normal N and 

the Kinect should be level with the ground. Since our probe 

end-effector is orthogonal to our end-effector’s XY plane, i.e., 

it extends in the Az direction, we solved the following 

equations for AX, Ay and AZ: 

𝐴𝐴𝑧𝑧 = −𝑁𝑁, 𝐴𝐴𝑥𝑥 ∙ 𝑁𝑁 = 0, 𝐴𝐴𝑥𝑥𝑧𝑧 = 0, and  

𝐴𝐴𝑦𝑦 = 𝐴𝐴𝑧𝑧 × 𝐴𝐴𝑥𝑥                 (13a,b,c) 

The position the end-effector moved to, arbitrarily chosen as 

𝑃𝑃𝐶𝐶1 from the 3 user-defined points, is a translation from the 

actual leaf position. Our probe stick was offset from the tool 

center point in the direction of the tool’s x-axis, and was 

orthogonal to the tool’s XY plane. Thus, the end-effector 

position, in robot base coordinates, was defined by: 

𝑃𝑃 = 𝑃𝑃𝐶𝐶1 + 𝐿𝐿 ∗ 𝑁𝑁 − 𝑟𝑟 ∗ AX    (14) 

Where L is the length of the probe stick and r = radius from 

the tool center point to the thin probe. Next, we determined the 

rotation vector to send to the arm by solving equation 12 for 

rx, ry, and rz. Finally, the calculated coordinate values were sent 

to the UR10 to probe the leaf. 

4. EXPERIMENT 

This section presents an experiment demonstrating current 

effectiveness of the proposed system. The UR 10 arm was 

commanded to probe two plants (one artificial Silk Dracaena 

plant - VCK8023, from artificialplantsandtrees.com - and one 

real Ficus plant), on three separate leaves, five times each (i.e. 

30 separate probings). Both plants were placed on a 73 cm-

high table (roughly the height that the UR base is at), around 

1m apart. During normal conditions, the UR arm would extend 

roughly 80 centimeters in its Y direction for its end-effector to 

hit a desired leaf. One small piece of blue painters’ tape (~5 

mm square) was placed in the middle of each desired leaf. 
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walls surrounding the plant are far more stable than the pixels 

corresponding to the thin-stemmed, thin-leaved plants. 

We wanted an algorithm that was computationally efficient 

enough to allow quick reconstructions, and knew the Kinect 

V2 API has an accurate mapping between the color camera and 

the depth camera. However, not every depth pixel has a 

corresponding color pixel due to physical properties of the 

sensors. We set depth pixels without an RGB counterpart to 

zero. Incoming images from the Kinect were put into a data 

structure that is effectively an RGB image. This representation 

is known to be sensitive to lighting changes. There are many 

methods for dealing with this issue. Yang and Waibel, for 

instance, found that human faces were clustered in what they 

term chromatic color space (Yang 1997). We are mainly 

interested in plants, which are generally diffuse green and 

brown objects, so we chose to convert our RGB input image 

into HSV. After conversion to HSV, an experimentally-

determined threshold was applied to each depth pixel. Let Dij 

(Tij) represent the pixel in row i row and column j of the R x C 

depth image (thresholded depth image), corresponding to a 

region of the HSV image as determined by the Kinect API’s 

mapping. We have, for 1 ≤ 𝑖𝑖 ≤ 𝑅𝑅 𝑎𝑎𝑎𝑎𝑎𝑎 1 ≤ 𝑗𝑗 ≤ 𝐶𝐶, 

𝑇𝑇𝑖𝑖𝑖𝑖 = {𝐷𝐷𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖 𝑉𝑉𝑖𝑖𝑖𝑖 < 140
0 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒     (10) 

The value of 140 conservatively thresholds out many 

extremely bright pixels, such as the walls of the growth 

chamber. Next, a 2x2 rectangular structuring element was used 

to morphologically dilate the image (Jain, 1995), 

conservatively removing many noisy elements. This resulting 

thresholded and dilated depth image, which contains the plant 

pixels plus some other pixels, is passed to the KinectFusion 

algorithm with default settings except for expanded voxels in 

the camera’s left-right direction, which it labels as X. The goal 

is to probe leaves close to the front of the plant, so Y and Z are 

currently not very important. Most settings were found to have 

minimal effect on the results. An example fusion image is 

shown in Fig. 5. Finally, the mesh is processed by the mesh 

probing algorithm. 

 

Fig. 5. A sample of fused image 

3.4 Mesh Probe Algorithm 

Given an initial pose of the robot, defined by position 𝑃𝑃 =
[𝑝𝑝𝑥𝑥, 𝑝𝑝𝑦𝑦, 𝑝𝑝𝑧𝑧]𝑇𝑇

 and rotation vector 𝑟𝑟 = [𝑟𝑟𝑥𝑥, 𝑟𝑟𝑦𝑦, 𝑟𝑟𝑧𝑧] in the robot 

base coordinates, we desire the transformation matrix from the 

end effector to the base. This is given by 

𝐻𝐻𝐸𝐸𝐸𝐸 =  [𝑅𝑅 𝑃𝑃
𝟎𝟎 1]     (11) 

The rotation matrix R is defined as 

𝑅𝑅 = [𝐴𝐴𝑥𝑥, 𝐴𝐴𝑦𝑦, 𝐴𝐴𝑧𝑧] = [
  c + rx

2v  rxryv– rzs rxrzv + rys
ryrxv + rzs c + ry

2v ryrzv– rx s
rzrxv– rys rzryv + rxs c + rz

2 v
] 

(12) 

Where 𝑐𝑐 = cos(θ) , s = sin(θ) , 𝑎𝑎𝑎𝑎𝑎𝑎 𝑣𝑣 = 1 − cos (θ). See 

Craig (2009) for discussion. 

 and 𝟎𝟎 = [0, 0, 0]. To convert user-selected points PCi, 1 ≤ 𝑖𝑖 ≤
3, from camera coordinates into base coordinates PBi, 1 ≤ 𝑖𝑖 ≤
3, we used 

𝑃𝑃𝐸𝐸𝑖𝑖 = 𝐻𝐻𝐸𝐸𝐸𝐸 ∗ 𝐻𝐻𝐶𝐶𝐸𝐸 ∗ 𝑃𝑃𝐶𝐶𝑖𝑖     (12) 

Next, we determined the normal to three user-selected points 

(the normalized cross product between [PC2-PC1] and [PC3-

PC1]) in order to calculate the desired end-effector coordinate 

system axes AX, AY, AZ. Two logical constraints were added 

to our system. Az should align with the surface normal N and 

the Kinect should be level with the ground. Since our probe 

end-effector is orthogonal to our end-effector’s XY plane, i.e., 

it extends in the Az direction, we solved the following 

equations for AX, Ay and AZ: 

𝐴𝐴𝑧𝑧 = −𝑁𝑁, 𝐴𝐴𝑥𝑥 ∙ 𝑁𝑁 = 0, 𝐴𝐴𝑥𝑥𝑧𝑧 = 0, and  

𝐴𝐴𝑦𝑦 = 𝐴𝐴𝑧𝑧 × 𝐴𝐴𝑥𝑥                 (13a,b,c) 

The position the end-effector moved to, arbitrarily chosen as 

𝑃𝑃𝐶𝐶1 from the 3 user-defined points, is a translation from the 

actual leaf position. Our probe stick was offset from the tool 

center point in the direction of the tool’s x-axis, and was 

orthogonal to the tool’s XY plane. Thus, the end-effector 

position, in robot base coordinates, was defined by: 

𝑃𝑃 = 𝑃𝑃𝐶𝐶1 + 𝐿𝐿 ∗ 𝑁𝑁 − 𝑟𝑟 ∗ AX    (14) 

Where L is the length of the probe stick and r = radius from 

the tool center point to the thin probe. Next, we determined the 

rotation vector to send to the arm by solving equation 12 for 

rx, ry, and rz. Finally, the calculated coordinate values were sent 

to the UR10 to probe the leaf. 

4. EXPERIMENT 

This section presents an experiment demonstrating current 

effectiveness of the proposed system. The UR 10 arm was 

commanded to probe two plants (one artificial Silk Dracaena 

plant - VCK8023, from artificialplantsandtrees.com - and one 

real Ficus plant), on three separate leaves, five times each (i.e. 

30 separate probings). Both plants were placed on a 73 cm-

high table (roughly the height that the UR base is at), around 

1m apart. During normal conditions, the UR arm would extend 

roughly 80 centimeters in its Y direction for its end-effector to 

hit a desired leaf. One small piece of blue painters’ tape (~5 

mm square) was placed in the middle of each desired leaf. 
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Before each trial, the rover was set up at the edge of a track 

with complete magnetic tape as would be in a setup with one 

chamber. The rover entered the “chamber” and stopped at the 

intersection. A user clicked a button on the PC’s custom user 

interface (UI), commanding the rover to shift sideways. There 

was only one issue with the tape-following navigation. After 

trial 3, one sensor reported magnetic tape in an un-taped 

portion of concrete. The sensors were calibrated with the 

Roboteq utility and the experiment proceeded as planned. As 

the lab currently lacks access to a 2D robot-tracking setup, the 

precision of this tape-following is omitted for this report. 

 

Once the desired plant was in view, the user initiated our 

filtered Kinect Fusion algorithm. The UR10 moved to view the 

desired leaves, and the mesh was saved. Three points near the 

bottom-left corner of the tape markers were located in the 

MeshLab software, and stored in .txt file. The user clicked on 

our UI to probe the plant, the coordinates were sent through 

our “mesh probe algorithm”, and the UR 10 approached the 

leaf with the probe. Using the UR 10’s touchscreen user 

interface, we found ground truth by translating the end-effector 

until the probe hit the bottom-left corner of the tape markers. 

A summary of results is presented below. 

Table 1. Euclidian Distance Errors [mm]. 

  

Trial         

 Plant Leaf 1 2 3 4 5 Avg. 

1 1 29.7 27.7 27.4 27.9 26.6 27.9 

1 2 22.9 23.5 22.0 24.5 26.9 24.0 

1 3 20.7 33.9 20.9 25.7 30.3 26.3 

2 1 18.6 16.9 8.5 24.0 19.6 17.5 

2 2 27.4 34.3 29.5 30.3 32.6 30.8 

2 3 34.7 33.0 27.1 35.1 31.9 32.4 

      

Avg. 26.5 

 

5. CONCLUSIONS 

For some precise applications, the results indicate that further 

refinement would be needed. Future work includes reducing 

these errors. The system may be highly sensitive to camera 

calibration, requiring a calibration after even a slight change in 

camera orientation relative to the end-effector. Otherwise, 

improvements include more sophisticated pre-processing of 

the depth data or refining the KinectFusion routines. Use of 

another highly accurate distance sensor to augment the rough, 

real-time Kinect algorithm is one alternate solution. Finally, 

we aim to make the system fully autonomous. 
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